Parameter Estimation Method of Extreme Value Distribution under Periodic Inspection Based on Interval Statistic
نویسندگان
چکیده
منابع مشابه
Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring
In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...
متن کاملParameter estimation for the general extreme value distribution
This study is concerned with the estimation of the parameters of the general (or generalised) extreme value (GEV) distribution by the methods of maximum likelihood (ML) and probability-weighted moments (PWM) for complete and type I censored samples. For complete samples, the PWM provided estimators which are less biased than the ML estimators. For the variances/covariances of the parameter esti...
متن کاملAn optimal analytical method for nonlinear boundary value problems based on method of variation of parameter
In this paper, the authors present a modified convergent analytic algorithm for the solution of nonlinear boundary value problems by means of a variable parameter method and briefly, the method is called optimal variable parameter method. This method, based on the embedding of a parameter and an auxiliary operator, provides a computational advantage for the convergence of the approximate soluti...
متن کاملAn Estimation Method Using Periodic Inspection of Indicators
This paper proposes a new approach for estimating the failure time distribution using the indicator data. The indicators, which are checked by periodic inspection of a standby redundant system, only convey whether at least one failure occurs per interval. The estimation procedure first obtains the estimation of the forward recurrence time using the indicator data. Then the mean is estimated bas...
متن کاملPoint and interval estimation for extreme-value regression model under Type-II censoring
Inference for the extreme-value regression model under Type-II censoring is discussed. The likelihood function and the score functions of the unknown parameters are presented. The asymptotic variance–covariance matrix is derived through the inverse of the expected Fisher information matrix. Since the maximum likelihood estimators (MLE) cannot be solved analytically, an approximation to these ML...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2017
ISSN: 2475-8841
DOI: 10.12783/dtcse/itme2017/7961